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Introduction

Piecewise linear circuits are used to approximate non-linear functions such as sine,
square-root, logarithmic, exponential, etc. The quality of the approximation depends on
the number of segments and the strategy used in determining the segments. There are
two general approaches to building piecewise linear circuits: (1) non-linear voltage
dividers with diodes (or transistors) used to switch between the segments and (2)
summing the outputs of a chain of saturating amplifiers. Both of these approaches are
technically the same although each has its advantages and disadvantages. The diode
approach has the advantage of simplicity but the disadvantages include temperature
dependence on the switching thresholds and relatively slow response. The saturating
amplifier method has the disadvantage of complexity but the advantages of minimal
temperature dependence on thresholds and high speed. The focus for this course will be
on diode switching.

The piecewise linear circuits we will discuss are divided into two types: compression and
expansion and the circuit topology is different for each type. Compression circuits
compress the dynamic range of an input signal. Examples include square-root,
logarithmic, and sine. Expansion circuits expand the dynamic range of an input signal
and a common example is the exponential function. Sometimes a combination of both
types of circuits is needed to implement a particular transfer function such as to create a
linear frequency versus voltage tuning characteristic for a varactor tuned oscillator (a
varactor is a diode whose junction capacitance can be varied by varying the reverse bias).

The student must learn how to analyze piecewise linear circuits and then how to design
the circuits. We will begin with analysis. Since the circuits are non-linear, superposition
will not generally apply although it will be valid over each linear segment. It is important
to understand when superposition can and can not be used. The starting point should
always be with the linear segment for the smallest signal. Then we progress one segment
at a time until the last segment handling the largest signals is active. Each segment
analysis is simple (i.e. linear) and builds on the result of the previous segment analysis.
Our goal is to determine the breakpoints and slopes of each segment.

For design, we will have determined a list of breakpoints and slopes to fit the desired
function. This list may have been determined graphically or by some mathematical
process. However the list was determined the goal is to implement it in hardware. As in
analysis, we begin with the segment that applies to the smallest input signal and progress
one segment at a time until we are finished with the last segment handling the largest
input signal. Each segment design is simple (i.e. linear) and builds on the results of the
previous segment design.

Compression circuits are generally built as non-linear voltage dividers. Expansion
circuits are generally built by constructing the inverse compression circuit and using this
circuit in the feedback of a non-inverting op-amp. The focus of this paper will be on
compression circuits.
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Analysis

The general process of analysis and design can be illustrated by an example. The
example will be a simple implementation of a network to approximate the square-root of
an input voltage over the range of 1 to 10 volts. This is the same circuit that is designed
later. The goal of analysis is to determine the breakpoints and the slopes of the different
segments. From this data a plot of the transfer function can be made. The circuit is
shown in Figure 1.

The first thing to do is to establish the breakpoints. Analyzing the voltage divider shows
that:

VA = 1.69 * 51 / (51 + 68 + 75) = 0.44 volts
VB = 1.69 * (51 + 68) / (51 + 68 + 75) = 1.04 volts
VC = 1.69 volts

Using a reasonable model (discussed below) for the diode of 0.56 volts then gives us the
real breakpoints of:

V1 = 0.44 + 0.56 = 1.00 Volts
V2 = 1.04 + 0.56 = 1.60 Volts
V3 = 1.69 + 0.56 = 2.25 Volts

Now we can calculate the slopes by using the voltage divider equation. We note that:

R1 = 6,800 Ohms
R2 = 7,190 Ohms
R3 = 6,600 Ohms

For input voltages below the first breakpoint of 1.00 volts, the slope of the output is 1.00
by definition since no voltage division is taking place. For output voltages between the
first and second breakpoints the slope is the voltage division of R0 and R1 which is:
6,800 / (10,000 + 6,800) = 0.405.

For output voltages between the second and third breakpoints the slope is the voltage
division of R0 and R1||R2 which is 3,495 / (10,000 + 3,495) = 0.259.

For output voltages higher than the third breakpoint the slope is the voltage division of
R0 and R1||R2||R3 which is 2,285 / (10,000 + 2,285) = 0.186.

For plotting the transfer function we would like to know the input breakpoints. These can
be calculated from the above data. The first input breakpoint is at 1.00 volts because up
until that point there is no voltage division taking place and the output simply equals the
input. For the output breakpoint of 1.60 Volts, the input breakpoint is found by the
general equation:

Xa + (Yb–Ya) / SLOPEba = Xb
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Where Xa is the previous breakpoint, Xb is the next X breakpoint (the one we are
looking for), Yb is the Y value of the breakpoint we know, and SLOPEba is the slope of
the segment from point a to point b.

Substituting our data give:

1.0 + (1.60–1.00) / 0.405 = 2.48 volts

The next input breakpoint is found by

2.48 + (2.25–1.60) / 0.259 = 4.99 volts

There are no more breakpoints but we need an easy way to plot the final line segment for
inputs above the last breakpoint. All we have to do is to pick any point we like that is
spaced about as wide as practical from the last breakpoint and compute the corresponding
input voltage. This is done the same way as in the previous calculations. I will choose
3.00 volts. Thus,

4.99 + (3.00–2.25) / 0.186 = 9.02 volts.

Thus, we have the following sequence of x and y data pairs that describes the piecewise
linear transfer function.

x y
0.00 0.00
1.00 1.00
2.48 1.60
4.99 2.25
9.02 3.00 note: this line segment continues as far past this point as will fit on

the graph.

After plotting this data we are now finished with the analysis.
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Figure 1: Simple piecewise-linear square-root circuit
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Figure 2: Plot of piecewise-linear square-root circuit
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Design

The design of a square-root network will now be illustrated. The first thing to do is to
establish the signal range over which the square-root will be computed (I will specify this
as 1 to 10 Volts). The next thing to do is to construct a spreadsheet to assist in fitting a
series of line segments to the exact function. The number of required segments is then
determined based on the desired accuracy. Our goal is to determine the minimum
number of segments that will meet an accuracy specification (for this example we will
use about 1 percent).

The spreadsheet is first built to plot the true curve representing the desired function.
Then straight lines are manually drawn to fit the curve with minimum error. These lines
are approximate and only a starting point to serve as a basis for constructing the lines in
the spreadsheet. In general the end points of the segments will not fall exactly on the true
curve except possibly at the beginning or end of the function–this results in a more
accurate approximation–but is more difficult for the human to work with as this
introduces many degrees of freedom to optimize. The spacing of the points is never
linear. The rough optimal spacing is inversely related to the magnitude of the second
derivative of the function. That is–more segments are used where the slope is changing.
I determined that three line segments over the 1 to 10 volt range can approximate the
square-root with less than 1 percent error except at just a few areas (the maximum error
in this example is 1.39 percent–more refinement in the line segments might reduce the
error).

You will observe that the line segments are specified in the spreadsheet as a set of x and y
points. The resulting y = mx + b equations are computed by the spreadsheet for the data
points. The columns of data represent the input, the true value, and the approximate
value determined by the line segments. The next columns are the error (approximate–
exact), and error squared. At the top of the error squared column is the sum of the square
of the individual data. The goal is to manipulate the x,y data points to minimize this
term. Once the term has been reduced about as far as practical then the resulting data and
line equations are used to design the network. The equation below is from a cell in the
approximate column to illustrate how to automatically select the right line equation.

=IF(A13<$A$6,A13*$E$6+$F$6,IF(A13<$A$7,A13*$E$7+$F$7,IF(A13<$A$8,A13*$
E$8+$F$8,A13*$E$9+$F$9)))

The line segments are plotted on top of the exact curve as a visual guide. The break
points and slopes are:

Breakpoint Slope
1.00 0.407
1.59 0.259
2.25 0.186

We do not implement the last point (3.18) as that point is only used to establish the line.
In general we never implement the last point.
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Figure 3: Excel spreadsheet to tweak breakpoints for minimum sum of error2

note: Figure 3 continues on the next two pages
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Figure 3 concludes

We are now ready to determine the resistor values. Our entire design consists of
designing simple voltage dividers. So, let us review the equation for a voltage divider
formed by an upper resistor, R1, and a lower resistor, R2.

Analysis equation:
k = R2 / (R1 + R2) = 1 / [(R1 / R2) + 1]

Design equation:
(R1 / R2) = (1 / k)–1

Note that k is the slope. We note that for input signals below the first breakpoint (1.00
volts) that the output voltage equals the input as all of the diodes are reversed biased. For
input signals between the first and second breakpoint the slope of the output is just that of
the simple voltage divider formed by R0 and R1. For input signals between the second
and third breakpoints the slope of the output voltage is that of the voltage divider formed
by R0 and the parallel combination of R1 and R2. For input signals above the third
breakpoint the slope of the output is that of the voltage divider formed by R0 and the
parallel combination of R1, R2, and R3. This observation leads to a very simple way to
calculate the required resistors R1, R2, and R3 relative to a chosen value for R0.

We will choose the value of R0 to be 10,000 Ohms for convenience. This is always a
choice.

The ratio, (R0 / R1) = (1 / 0.407)–1 = 1.457. Thus, R1 = 10,000 / 1.457 = 6,863 Ohms.
We will round this value to the nearest standard value of R1 = 6,800 Ohms.

The ratio, (R0 / R1||R2) = (1 / 0.259)–1 = 2.861. Thus, R1||R2 = 10,000 / 2.861 = 3,495
Ohms. Since we already know that R1 is 6,800 Ohms then we can calculate R2 as
follows using the inverse parallel resistance equation.

R2 = (6,800 * 3,495) / (6,800–3,495) = 7,191 Ohms. This value is about in the midway
between two standard resistor values so for better accuracy we will use the series
combination of 6,800 and 390 Ohms to make 7,190 Ohms for R2.
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The ratio, (R0 / R1||R2||R3) = (1 / 0.186)–1 = 4.376. Thus, R1||R2||R3 = 10,000 / 4.376
= 2,285 Ohms. Using the actual value of R1||R2 = 6,800||7,190 = 3,495 Ohms, we can
calculate R3 as (3,495 * 2,285) / (3,495–2,285) = 6,600 Ohms. We will use the series
combination of 5,600 and 1,000 Ohms to make R3.

Now we design the breakpoint voltage dividers. One complication is that we have to
allow for the voltage drop across the diodes. Unfortunately, this voltage drop is
temperature dependent and also current dependent. Another issue that we have to
consider is the source resistance of the voltage divider which adds to the resistance values
computed above. This issue can be corrected by subtracting the source resistance from
each computed resistance above.

One model that gives reasonably accurate results for a common 1N4148 diode is to use a
fixed voltage drop of 0.56 volts and a series resistance of 33 Ohms. The switching point
is not abrupt but is spread over several tenths of a volt beginning at about 0.4 volts. This
“soft turn-on” can be used to advantage to smooth the transition points –but it takes
manual tweaking of the breakpoints and small adjustments in the series resistance to
precisely fit the desired curve. It is an effort but the results are worth it–the desired
curve is approximated with very good accuracy.

We will subtract 0.56 volts from each breakpoint to obtain the output voltages of the
voltage divider. This gives us 1.69, 1.03, and 0.44 Volts. The source resistance of each
voltage divider tap should be very small (no more than roughly 1 percent) compared to
the series resistance in the diode network. Otherwise there will be error in the slopes–
although this error can be compensated by reducing the slope resistor by the appropriate
amount.

The easy way to design a multi-tap voltage divider is to establish the ratios of the
resistors to the resistor whose low side is connected to ground. Then we will determine
the smallest value of standard resistor to use to implement the voltage divider. The ratios
of the resistors are just the ratios of voltage drops. So (beginning with RA), the voltage
drops are 0.44, (1.03–0.44) = 0.59, and (1.69–1.03) = 0.66. Normalizing each voltage
drop by 0.44, the resistor ratios are: 1.00, 1.34, and 1.50. One candidate set of resistors is
51, 68, and 75 Ohms. There are other possibilities but this one will serve our example
well. The source resistance at the RA tap is 51 || (68 + 75) = 37.6 Ohms; the source
resistance at the RB tap is (51 + 68) || 75 = 46 Ohms, and the source resistance at the top
of RC is that of the voltage source–which should be close to 0 Ohms.
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Use of piecewise linear circuits in sine wave generation

Although sine wave oscillators can be made to generate very pure sine waves, it is
generally difficult to adjust the frequency since more than one component has to be
changed simultaneously. A simpler method is to generate a triangle wave and then use a
piecewise linear circuit to shape the wave into a sine wave approximation. Nearly all
analog multifunction signal generators use this method (the other methods involve a
direct non-linear approximation–is difficult to make work well but uses fewer parts). As
a historical note, this method was developed at Stanford University in the late 1940’s and 
acquired by the Hewlett-Packard Company which had a very close relationship with
Stanford. The first commercial product to use this method was the HP202A which was
introduced circa 1950.

Two piecewise linear circuits are used–one for positive polarity and one for negative
polarity. Except for polarity both networks are identical. The use of six diode controlled
breakpoints for each polarity produces a complete sine wave cycle approximation with 26
total segments. With optimum choice of the breakpoints it is possible to achieve a
distortion level of less than 1 percent.

The student should observe the sine wave from an analog sine-triangle-square wave
oscillator–such as an HP3312 or one of the old Wavetek models (not the Agilent
synthesized generator used now) . It is virtually impossible to see the breakpoints–this
is because the design capitalizes on the diode curve and also that the breakpoints are
optimally chosen. The best way to observe the breakpoints is to use a notch filter at the
fundamental frequency of the sine wave so that only the harmonics remain. The exact
number of breakpoints used (nearly always 6 for each polarity) can then be clearly seen.
The sine wave fundamental is gone but the distortion wave (i.e. the difference between
the approximation and the true sine function) is clearly visible and is about a factor of
100 smaller than the sine wave.


