Homework Problems

Transistor Bias Design and Analysis and Amplifier Analysis

rev 2

Note: Problems 6 to 10 are answers to problems 1 to 5 with rounding to nearest standard values. For problems 1 through 5, calculate R_E , R_{B1} , and R_{B2} . $V_{BE} = 0.65$ @ 25 deg. C and has a temperature coefficient of -0.0022 Volts/degree C. Use $K_T = K_B = 1.2$. All circuits use a NPN transistor operating on a single supply of V_{CC} ($V_{EE} = 0$).

Bias design problems:

- 1. Tmin = 10, Tmax = 40, Bmin = 30, Bmax = 100, $V_{CC} = 3$, $I_C = 5$ mA.
- 2. Tmin = 0, Tmax = 50, Bmin = 40, Bmax = 150, V_{CC} = 5, I_{C} = 10 mA.
- 3. Tmin = 10, Tmax = 40, Bmin = 50, Bmax = 200, V_{CC} = 9, I_C = 3 mA,
- 4. Tmin = 0, Tmax = 70, Bmin = 80, Bmax = 250, V_{CC} = 12, I_C = 1.5 mA.
- 5. Tmin = -20, Tmax = 60, Bmin = 100, Bmax = 300, V_{CC} = 20, I_{C} = 1 mA.

Bias analysis problems: Use the nominal V_{BE} and Beta calculated from above.

- 6. $V_{CC} = 3$, $R_C = 200$, $R_E = 62$, $R_{B1} = 1.6$ K, $R_{B2} = 820$
- 7. $V_{CC} = 5$, $R_C = 0$, $R_E = 51$, $R_{B1} = 2.2$ K, $R_{B2} = 750$
- 8. $V_{CC} = 9$, $R_C = 1$ K, $R_E = 110$, $R_{B1} = 13$ K, $R_{B2} = 1.6$ K
- 9. $V_{CC} = 12$, $R_C = 3.3$ K, $R_E = 470$, $R_{B1} = 91$ K, $R_{B2} = 13$ K
- 10. $V_{CC} = 20$, $R_C = 8.2$ K, $R_E = 820$, $R_{B1} = 300$ K, $R_{B2} = 27$ K

Amplifier analysis problems: Find Rin, Ro, Av unloaded, net gain and power gain.

- 11. Use circuit from problem 6. Common-emitter connection with Rsource = 250 Ohms and Rload = 300 Ohms.
- 12. Use circuit from problem 7. Common-collector connection with Rsource = 500 Ohms and Rload = 100 Ohms.
- 13. Use circuit from problem 8. Common-base connection with Rsource = 10 Ohms and Rload = 1200 Ohms.
- 14. Use circuit from problem 9. Common-emitter connection with Rsource = 2000 Ohms and Rload = 3000 Ohms
- 15. Use circuit from problem 10. Common-base connection with Rsource = 40 Ohms and Rload = 10 K.