Homework Problems BJT Amplifier Design

rev 1

Design the following circuits to meet the following requirements. For each common-emitter and common-base design, perform the complete process for $R_C = R_L/2$, $R_C = R_L$, and $R_C = 2*R_L$. For each common-collector design perform the complete process for $R_E = R_L/2$, $R_E = R_L$, and $R_E = 2*R_L$. The three designs will illustrate the issues over the range of choices. For all designs, use Bmin = 100, Bmax = 250, Tmin = 10, Tmax = 50 degrees C, and V_{BE} @ 25 degrees C = 0.62 Volts with a temperature coefficient of - 0.0022 Volts/degree C. Use $K_B = K_T = 1.2$. Confirm the designs by analysis.

- 1. Design a common-emitter amplifier with a net voltage gain of 20 that operates off of 9 VDC. The source impedance is 2000 Ohms and the load impedance is 5000 Ohms. What is the maximum possible net voltage gain that each of the three circuits can achieve if $R_{\rm E1}$ is 0?
- 2. Design a common-base amplifier with a net voltage gain of 10 that operates off of 15 VDC. The source impedance is 25 Ohms and the load impedance is 1000 Ohms.
- 3. Design a common-collector amplifier that operates off of 12 VDC and drives a load of 470 Ohms. What is the input impedance of each of the three circuits? What is the power gain of each of the three circuits?

Problems 4, 5, and 6 are derivation problems using your design methods for problems 1 through 3 but with V_{CC} and R_L used symbolically instead of as numbers. The conclusions of these problems are both useful and interesting.

- 4. Using the parameters at the top of this page, and given V_{CC} and R_L , determine the maximum possible power gain in dB for a common-emitter amplifier for each of the three choices of R_C . What effect does V_{CC} have on ultimate power gain? What effect does R_L and the choice for R_C have on ultimate power gain?
- 5. Repeat problem 4 for a common-base amplifier. What effect does V_{CC} have on ultimate power gain? What effect does R_L and the choice for R_C have on ultimate power gain?
- 6. Repeat problem 4 for a common-collector amplifier using the three choices for R_E . What effect does V_{CC} have on ultimate power gain? What effect does R_L and the choice for R_E have on ultimate power gain?